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Abstract 

This paper describes ASS"tUCE, an exploratory environment for Finite State Machines. The enviromnent 
is intended as an aid in the field of digital systems design with research and educational purposes in mind. 
Currently, ASStUCE is airead:· applicable as a set of computer aided design tools for the synthesis of digital 
systems. 'vVe describe the general structure of the environment, stressing its use as an educational tooL We 
also present the available aids for performing state minimization, and simultaneous state ac;signment and sta,te 
minimization. Next, we discuss ongoing works in the application of the same formal concepts underlying the 
available tools to the solution of other hardware design problems, like functional decomposition and asynchronous 
design. Benchmark results are presented comparing ASStUCE component programs to available state of the 
art research tools. 
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1 Introd uction 

Finite State Machines (FSMs) are widely employed in Computer Science in general, and in Digital Systems Design 
in particular. Indeed, any digital system can be described in the logic level of abstraction using this modeL Such 
description can be synthesized as a digital circuit, through the use of well-known logic design techniques for 
sequential circuits, e.g. those described in textbooks like [12]. 

However, sorne facts prevent this approach to be useful in building state of the art digital systems. First, 
present Very Large Scale Integration (vLsr) digital circuits are typically composed by a number of electronic 
components in the order of 106 to 107 , and should thus be represented by FSl\ls counting maybe as many as 10500 

states[28]. Of course, applying logic design techniques to implement such FS:\!s in hardware is unthinkable, even 
if powerful supercomputers are used to accomplish the design task. Second, since FSMs are a general model, 
its efficiency to represent hardv;are modules that display sorne regular internal organization (like datapaths, 
register files and memories) is very low compared to specifically designed models. The only way to deal with the 
first fact is to rely upon the extensive use of hierarchical decomposition of the design process. This leads to the 
proposition of higher leve! models such as Communicating FSMs[ll] and Communicating Sequential Processes(13]. 
The solution to the second problem normally relies on the use of specific models whenever they are applicable, 
leaving the FSM model to the design of unstructured hardware modules only. 

Even with the above mentioned restrictions to its use, FSMs are by far the most useful model for describing 
many important classes of hardware modules like sequence detectors, embedded controllers, industrial process 
controllers and processor and plant control units[6]. Thus, we consider justified to propose an exploratory 
environment for manipulating FSMs in view of its implementation in hardware. While stemming directly from 
research work in integrated circuits (res) design [3, 5], the ASStUCE environment is evolving to become both 
a research and educational too! for digital systems at undergraduate and graduate levels. 

The rest of the paper is organized as follows. The next Section states the addressed problem and gives an 
overview of the ASSt UCE environment characteristics, including a brief description of a first tool, XASSt U CE, 
designed to act as a textual/ graphical interactive interface to the environment. Closing this Section, there is 
a discussion on the current work in enhancing the educational characteristics of ASStUCK Section 3 presents 
the interna! structure of ASS"tUCE, together with sorne of the main concepts used in the construction of the 
research tools integrated in the environment. The discussion stresses the generality of the underlying formal 
fr amework. The same Section comprises a brief discussion of the two currently available research tools, a heuristic 
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two aspects, as an educational tool (Section 2) and as a research resource 3 and 

some condusions on the use and implementation of the environment 

2 E Envi:ronn1ent 

2.1 The FSM Design Problem 

An FS~.;¡ is an abstract model that can be described as follows: 

Definition 1 S tate M achine) A finite state machine zs an stnoctl!ire the 

."A.== S, 

1. I = {tp-LZp_2 , ... ,io} is the input S is the 
O = { Or-1, Dr-2, . .. , Oo} is the output aiphabet; 

.2. o is a discrete o : I x 8 -1 S; called next sta.te or transition function a 

(i_í, Sk) E IX S, if o(ij, s") is specified, S¡= o(ij, S k) is the next state the FSM A ta the 
input Íj and to the present state s"; 

3. ), · ,\ : I x S -+ called output function of · given a pair ( i j, s k) E 1 x S, iÍ 
Om = >.(íj, sk) is the outpud the FSM .A corresponding to the inpt!t Íj and to the 

The pair ( 5( Íj, sk), >.( ij, s1,)) is called a transition of FSM A. lf both, o and >. are completely specified functions, 
A is called a Completely Specified FSM (CSFSM), otherwise A is called an lnccmpletely Specified FSM (ISFSM). 

In order to im.plement a digital system. starting from an FSM description, several steps are required. Each 
of these steps consists normally in solving sorne complex design optimization problera, whose solution leads 
to the best ímplementation in hardware of the FSM functionality. Hardvvare implementations are considered 

one or more objective criteria. These criteria most often conflict with each other. The 
most relevant criteria are speed, silicon area, power dissipation and testability. If we restrict 
attention to the logíc level of abstraction only, the most important design problems related to FSMs are: 

~' - given an FSM, break it ínto a set of smaller, communicating FSMs whose input/output 
behs,vím· 1r:: equivalent to or compatible with the original description, and such that from the resulting 
network obtaín the best hardware implementation; 

state minimization or reduction- given an FSM A, find another equivalent or compatible FSM B, but 'Nhich 
has the set of states S B with the least cardinality; 

input, state and output assignment or encoding - given a symbolic FSlvi, find a binary encoding for the sets 
of inputs, states and outputs (I, S, 0), generating an encoded FSM; the encoding must be such that the 
physical implementation is the best and, at the same time, equivalent to compatible with the symbolic 
description; 

~ mapping or binding - given an encoded FSM, the kind of hardware device to u2e in the implementation 
and a library of hardware modules supported by the device, translate the FSM into a set of 
interconnected modules that is equivalent to or compatible with the encoded FSM, and wnich satisfies 
optimality criteria. 

Envircmment Basic Principies 

Engineering and Computer Science students are taught to deal with FSlVI logic design representations such as 
state tralrsition graph3 and tables (STGs/STTs), truth tables and Karnaugh maps. However, production tools 

~¡ 8 for FSM design are never based on these, due to their associated computational complexíty. 
Production and research Computer Aided Design (CAD) tools make available very complex and ·,rery efficient 

rn.ethods and Iepresentations to sol ve each FSM hardware design problem. Although all such tools allow automatic 



execution, the best designs can only be obtained after careful experimentation with each using 
distinct pararneterizations. This can only be achieved if the concepts underlying each tool are well understood. 
More critieal than the designer role is that of the computer scientist, which must be able to enhance and/or 
propose alternate or missing design methods. Their task is further complicated by the fact that the tools 
are normally inserted inside a commercial CAD system framework. These frameworks contain sometímes more 
than a hundred tightly coupled tools, and the design techniques used by each tool are consídered as intellectual 
property, i.e. are not publicly available. 

Training students to become dever tool users and tool designers is a hard task, since each FSM design problem 
implies mastering both, numerous formal concepts and convoluted data structures with associated manipulation 
algorithms. 

As an e;. ':Tlple, let us consíder the problem of performing FSM state minimization, shown P:Heeger to be 
NP-complete in the general case of ISFSMs[22] (this is the model we assume here). The mathematical COJllCí?m;s 
that need to be mastered include equivalence and compatibility classes, set covering and set closure. From 
it is necessary to develop notions such as state compatibility, compatibility classes of states, prime compatibility 
classes and state class sets(8]. Tten, adequate data structures and techniques must be sought to develop state 
compatibility analysis, and finding the mínimum cardinality closed cover of compatibility classes of states. 
Complex techniques like binate covering were recently proposed for effi.ciently minimizing large FSMs [9], and this 
adds to harrlen the understanding of the design problem resolution. 

The main objective of developing ASSFJCE as an. educational resource is to provide an environment that 
significantly increases the controllability and observability of state of the art algorithm.s 
solution of FSM design optimization problems. This is obtained in ASSfUCE by allowing 
coupled with aids to inspect data generated and manipulated in each step, either in 
form" For using ASSfUCE, a use:r may choose to execute state minimization of sorne FSivL 

he may read in the FSM description, perform state compatibility analysis and then, based on ti1e state structure 
Emd quantitative data obtained from this step, decide for the setting of sorne specific optimization for 
the following of the state minimization procedure. 

Both commercial and academic environments for digital systems design already exist. 
research environment developed at the University of Berkeley[25] and the educational environment at 
the University of Arizona, also well-known[l9J. However, our proposition differs from both examples, as will be 
depicted in the following Sections. 

2 3 The Enviromnent Interface 

The ASSfUCE environment provides a framework vvhere to integrate new design tools in a form adequate to 
use them wíth teaching purposes. It comprises an interactive, textual/ graphics interface with an execution shell 
accepting commands. The shell allows the execution of command scripts, so that using a combination of batch 
and on-line com.mands is possible. 

The philosophy underlying the interface is to provide either fine-grained and coaxse-grained interaction. In 
fine-grained interaction, each atomic command is a single transformation of data, such as st.ate compatibility 
analysis or input constraints generation. At each step, the user can visualize results ofthe computation performed 
up to that moment and decide what todo next. Flags that control the execution offine-grained commands can be 
set at any their settings were not used in previous commands. In coarse-grained interactíon, 
commands can represent sets of fine-grained commands or sorne design tool execution with specific parameters. 

vu>u'·"""''-'" can be classified in three groups: 

~ input/output- for reading and vvriting files, including the input and execution of scripts; 

'l> status manipulation - used to visualize results and setting flags to control execution of sorne design too1 
step; 

® FSM manipulation commands - employed to execute sorne design tool step or sorne analysis step. 

The execution of commands and setting of flags is controlled through the use of dependency graphs to avoid 
running commands which require execution of other commands not issued yet or setting flags after havíng used 
the previous settings. Figure 1 shows a sample screen of the XASStUCE program[26] that implements the 119 
environment interface after the execution of commands for loading and listing an FSM in the KISS2[7] format 

XASStUCE was implemented using a mix of tools, Tcl/TK[20] for graphics and the shell, and C++ and 
the LEDA class library [17] for im.plementing computationally intensive tasks. 
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3.2 Exact State Minimizer 

Heuristic and exact SM techniques can be widely found in FSM logic synthesis. Completely specified FSMs were 
much studied in the fifties. The reduction of the number of states on ISFSMs received a first thorough treatment 
by Paull & Unger[21] and the complexity analysis ofthe problem was addressed by Pfleeger[22]. Minimizing the 
number of states is an important step on the classic process of FSM design. New and more efficient algorithms 
have accordingly been proposed to deal with FSM VLSI implementations, e.g. the one proposed Hachtel and 
others[9]. 

Intuitive techniques used to exactly minimize the number of states on CSFSMs have a O(n2 ) temporal com­
plexity, with n being the cardinality ofthe set of states. A more efficient technique was proposed by Hopcroft[14], 
with a complexity of just O(nlogn). Unfortunately, the Hopcroft algorithm works only with :rviooE 
where each state has an associated output, Le. the output depends exclusively on the present state and just 
indirectly on the prímary inputs. Also, this technique was implemented to minimize compiler parser FSMs, i.e. 
machines with a single, yesfno kind of output. 

Y.le have proposed an algorithm which is based on Hopcroft's. Vievving the integration of this 
into ASStUCE and the fact that we need to deal with hard-ware implementations of FSMs, we have had to 
generalize the original technique to accept Moore and Mealy machines with possibly non-binary sets. 
This algoríthm was implemented as a computer program which we call MEMCE[24]. 

The basic internal data structure of MEMCE is a generallzation of the Inverse State Table (IST) proposed 
by Hopcroft. Our algorithms rely on state reachability analysis computed from this data 
auxiliary lists for data manipulation. IVIore details on the implementation can be obtained in (24]. 

and Future 

The tools described in the prevíous paragraphs are already operatíonal, but new versions are under 
development. 

The heurístic minimizer / encoder needs more constraint satisfaction methods, in arder to take full a.d-
vantage of the pseudo-dichotomies unified framework A recently proposed new to 
ing functions and sets through Binary Decision Diagrams[2] is under iruestigation. Also, constraint dasses other 
than those currently manipulated the progran1 luwe been formulated using the unified 
but their generation from the FSM structure and their consideration during encoding is not available. 
the implementation technology considered today by our tools is limited to two-level logic. Generahzing it to 
treat multilevellogic is a needed :future work to cope with current state of the art environments. 

Another ongoing work is the ímplementation of a decomposition based on ASSi"UCE theoretical 
findings to build FSMs on top ofLook-Up-Table RAM-based FPGAs. FPGAs are a new kind. ofVLSI dynamically 
programmable device of great success in industry and academy. 

An MSc. research work is under vmy on the subject of mapping asynchronous implementations oÍ FSNiS into 
FPGAs. A new research project involving the authors is starting on the implementation of a gener.al encoder for 
dealing with several disparate encoding problems in VLSI and other fields as well. This works strongly 
on the experience obtained from the ASStUCE environment. 

Concerning state minimization, we have plans to implement exact and heuristic techníques for minimizing 
ISFSMs in order to address more thoroughly this Having complete cont;:ol over state mínization and 
encoding tools will allow a more relevant between the serial and simultaneous strategy for 
both problems. 

An important task we are currently undertakíng is the integration of our tools into the SIS environment. 
While ASSt UCE is good for fine grain manipulation, providing an insight of the inner workings of each ~"1o,v~""".~"u 
SIS is in widespread use in research and is good for coarse grain such as network rP.'<t.rn.rJ·., 

and global optimizations. Integrating our tools within SIS is a good way of allovving fair comparisons between 
them and SIS corresponding algoríthms. 

4 Benchmarks Results 

Both ASStUCE and MEMCE were implemented as computer programs using also the C++ language and 
122 LEDA, under the UNIX operating system. 

The FSM test set used is part of the benchmarks available at the Microelectronics Center of North Carolina 
(MCNC)[29]. For the ASStUCE program, 12 machines were taken, corresponding to descriptions where at 
least one non-trivial pair of compatible states exists. A machine with trivial compatible of states is 



uselessness of :cni~ÜlT.:.iz&tion tools, 'I'he test set üsed fcr 
the '? CSFSD.1s in the b2nchmark set. ISFSivis are not 

I·1IEMCE. 
The FSMs are reJJn~sE~nted which is the input format 

and IviEl\1: CE. 
Table 1 shows the comparison between parameterized with the ~5 lw run-tíme and the 

serial of running , to perform state minimization, followed which performs 
state 'llíe have chosen for STAMINA the run-time option ~s 1, which invokes a tight upper bound 
heuristic algorithm for performing state minimization avoiding the use of the default option, which performo 
ex:act minimízation and may lead to an growth in the execution time. we have 

for the run--tim.e option -e which iavokes a constrained encoding algorithm based on the satisfaction 
constraints V/e avoided the use of algorithms considering output constraints to maintain a 

fair wíth ASS-¡ UCE, since these constraints are not considered in our current uu .•. n·"u"':c~""a 

[ FSM -fT_b 
1 

st 1 o_b 
1 

a_cl 
1 

SIL el 
1 

<Lpt SlLpt a_ar sn_ar a_t sn_t a_spy sn..spy 1 

i s27 ~ 4 6 1 3 .3 13 12 234 1 216 0.42 0.1 '75.21 76.39 

1 bee~ount ll 3 7 4 2 2 9 10 144 1 160 0.32 0.0 65.23 66.25 

J !ion9 . 2 9 1 4 2 7 7 119 77 0.71 0.0 72.27 68.83 
bbara 4 10 2 4 3 22 20 484 380 0.54 0.11 7743 75.26 
o pus 5 10 6 4 Li 19 16 532 448 0.54 0.1 67.86 72.54 
trainll 2 11 

' 
1 4 2 6 6 102 66 0.57 0.01 71.57 69.70 

sse 7 16 7 7 4 27 31 1134 1023 1A6 0.23 78.75 79.86 
bbsse 7 16 7 7 4 27 31 1134 1023 1.39 1 

0.21 78 75 79.86 
exl 9 20 19 8 5 41 41 

1 
2501 2132 3.33 0.63 

1 
84.57 84.52 

tbk 6 32 ') 8 

~ 
4 94 53 3666 1431 25.34 29.27 74 55 61.36 ,_) 

1 

scf 27 121 56 9 7 133 124 18221 16244 167.26 103.54 91.32 91.49 
s298 3 218 6 12 8 345 287 16560 10332 815.37 392.68 76.03 74.96 

¿um/Avg - - - 72 48 743 638 44831 33532 1017.25 1 526.88 76.14 75.09 

i_b input bits 
FSM data: st number of statec 

o_b output bits 

Prefixes: a_ running ASStUCE 
sn_ running STAÍ,1INA+NOVA 

el code length 
Suffixe.s: pt product terms CPU time 

ar estimated area spy PLA sparsity 

Table 1: ASSíUCE versus Stamina+Nova 

our first implementation of ASStUCE has a performance inferior to the state of the art tools used 
with the serial strategy. The first point to stress is that ASSflTCE salves a harder problem than either NOVA 
or STAMIN A. Second, the heuristics behind the constraint satisfaction of NOVA guarantee that the least 
code length is obtained, while the current algorithm in ASStUCE cannot do the same. This results in bigger 
implementations. The order of magnitude of each of the measured parameters is nonetheless the same, and sorne 
gain in the sparsity of the resulting implementations indicate that these are more adapted to further treatment 

topological optimization tools like PLA folding. 
Table 2 shows the comparison between the MEMCE program and STAMINA. To provide equal comparison 

condiÜ!é' , we parameterized STAMIN A in this case with the -s O to force its algorithm to perform exact 
minimizatwn. 

\Ve can observe that in all tests sets, the MEMCE program obtained a comparable performance with the 
STAMINA tool. Exceptions are the Sla and S298 benchmarks. Due to the reduced number of completely 
specified FSMs in the test set we were not able to obtain a more significant set of results. However, we may 
see that again, the order of magnitude of th'e execution time for both STAMINA and MEMCE is the same. 
Being both exact minimizers, STAMINA and MEMCE generate identical FS!v!s asto the number of states, the 
absolute minimum. 123 

The results were obtaíned running all programs on a Sun Sparcstation 20/60 under Solaris 2.5.1. The pro­
grams ASStUCE and MEMCE were also ported to platforms running Linux OS. Both distributions are freely 
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FSM Memce_time Stamina_time 
bbara 0.04 0.01 
donfile 0.01 0.01 
modulol2 0.01 0.00 
o pus 0.08 0.00 
sla 0.98 0.06 
s27 0.02 0.01 
s298 3.01 0.43 
SUM 4.15 0.52 

Table 2: MEMCE versus Stamina 

available, together with the XASStUCE interface. They can be retrieved via Internet either by FTP or www at 
the addresses ftp:/ /ftp.infpucrs.br/pub/groups/gaph/ Asstuce/ and http:j jwww.inf.pucrs.br/ ""'gaph/ Asstuce/, 
respectively. 

5 Con el usions 

Vve proposed an environment applicable to both, research and teaching. This environment is useful for helping 
in the design of finite state machines to be implemented in hardware. 

This environment is based upon a formal framework that supports the formulation of severa! VLSI design 
problems which are being addressed by our research group. The framework provides a unifying principie for 
solving each individual problem by a constraint modeling step followed by a single constraint satisfaction step. 

We consider that the ASStUCE principies are unique in combining state of the art research results (such 
as those found in SIS and commercial production environments) with tools that are controllable and observable 
(such as those available in academic and commercial educational environments). It is the authors' belief, based 
on current teaching experience, that it is more profitable avoiding the proposal of aids such as languages and tools 
specifically adapted to digital systems design teaching. Instead, we suggest the careful adaptation of research 
and/or production tools to pedagogícal needs. This has as effect that students are finally better prepared for 
using real-world tools and solving real-world problems. 

Several works are presently under way with the enhancement of the ASStUCE environment in mind. The 
work is undertaken in parallel at either educational and research level, with a current greater emphasis in 
research. 
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